Two-color, one-photon uncaging of glutamate and GABA

نویسندگان

  • Stefan Passlick
  • Paul F Kramer
  • Matthew T Richers
  • John T Williams
  • Graham C R Ellis-Davies
چکیده

Neuronal cells receive a variety of excitatory and inhibitory signals which they process to generate an output signal. In order to study the interaction between excitatory and inhibitory receptors with exogenously applied transmitters in the same preparation, two caging chromophores attached to glutamate and GABA were developed that were selectively photolyzed by different wavelengths of light. This technique has the advantage that the biologically inactive caged compound can be applied at equilibrium prior to the near instantaneous release of the transmitters. This method therefore mimics the kinetics of endogenously released transmitters that is otherwise not possible in brain slice preparations. Repeated photolysis with either of the two wavelengths resulted in GABA- or glutamate-induced activation of both ionotropic and metabotropic receptors to evoke reproducible currents. With these compounds, the interaction between inhibitory and excitatory receptors was examined using whole field photolysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Distributions of GABA Receptors and Local Inhibition of Ca2+ Transients Studied with GABA Uncaging in the Dendrites of CA1 Pyramidal Neurons

GABA (γ-amino-butylic acid)-mediated inhibition in the dendrites of CA1 pyramidal neurons was characterized by two-photon uncaging of a caged-GABA compound, BCMACM-GABA, and one-photon uncaging of RuBi-GABA in rat hippocampal slice preparations. Although we found that GABA(A)-mediated currents were diffusely distributed along the dendrites, currents elicited at the branch points of the apical d...

متن کامل

GABAB Receptors Modulate NMDA Receptor Calcium Signals in Dendritic Spines

Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GAB...

متن کامل

Two-photon uncaging of gamma-aminobutyric acid in intact brain tissue.

We have synthesized a photosensitive (or caged) 4-carboxymethoxy-5,7-dinitroindolinyl (CDNI) derivative of gamma-aminobutyric acid (GABA). Two-photon excitation of CDNI-GABA produced rapid activation of GABAergic currents in neurons in brain slices with an axial resolution of approximately 2 mum and enabled high-resolution functional mapping of GABA-A receptors. Two-photon uncaging of GABA, the...

متن کامل

Caged compounds for multichromic optical interrogation of neural systems.

Caged compounds are widely used by neurophysiologists to study many aspects of cellular signaling in glia and neurons. Biologically inert before irradiation, they can be loaded into cells via patch pipette or topically applied in situ to a defined concentration; photolysis releases the caged compound in a very rapid and spatially defined way. As caged compounds are exogenous optical probes, the...

متن کامل

Optically selective two-photon uncaging of glutamate at 900 nm.

We have synthesized a 7-diethylaminocoumarin (DEAC) derivative that allows wavelength-selective two-photon uncaging at 900 nm versus 720 nm. This new caging chromophore, called DEAC450, has an extended π-electron moiety at the 3-position that shifts the absorption spectrum maximum of DEAC from 375 to 450 nm. Two-photon excitation at 900 nm was more than 60-fold greater than at 720 nm. Two-photo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017